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SUMMARY

The relation between order of accuracy and convergence rate for simple linear finite difference schemes for
differentiation and advection is examined theoretically and empirically. For sufficiently smooth functions,
i.e. those with sufficiently steep spectral slope, the convergence rate is given by the order of accuracy.
For less smooth functions, with shallower spectral slope, differentiation and advection behave slightly
differently: the convergence rate of a finite difference derivative is determined entirely by the spectral
slope, while the convergence rate of a finite difference advection scheme is determined by an interaction
between the spectral slope and the order of accuracy. q Crown copyright 2007. Reproduced with the
permission of Her Majesty’s Stationery Office. Published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

A commonly used measure of the accuracy of a numerical scheme is its order of accuracy. For
example, consider a function �(x) with true derivative �′

tr(x), and let �′
fd(x) be a finite difference

estimate of the derivative obtained by sampling � on a grid with spacing �x . The truncation error
� is defined by

�′
fd(x)=�′

tr(x)+� (1)

The finite difference estimate is said to be mth order accurate if, for infinitely differentiable �,
Taylor series analysis shows that �=O(�xm) as �x→0. The convergence rate is the rate at which
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the truncation error (measured locally or in some global norm) actually does approach zero as
�x→0. Provided � has at least m continuous derivatives, � does indeed decrease like O(�xm):
the convergence rate agrees with the order of accuracy. However, for many multiscale problems,
such as numerical weather and climate prediction, the data have shallow spectral slopes, consistent
with only a small number of continuous derivatives. Then the convergence rate may be slower
than suggested by the order of accuracy. This raises the question: what is the relevance of order
of accuracy, and how is it related to convergence rate, for multiscale problems? This question is
addressed for a pair of one-dimensional model problems: differentiation of a function and advection
of a function.

2. CONVERGENCE OF FINITE DIFFERENCE DERIVATIVES

A suitable test function is the isolated cosn hill, given by

�(x)=

⎧⎪⎨
⎪⎩
cosn

[
�(x−D)

2d

]
for D−d�x�D+d

0 otherwise

(2)

where 0<d<D, x ∈[0,2D]; D=0.5 and d= 7
64 [1]. The shape of the isolated cosine hill can be

seen in Figure 1. For integer n, this isolated cosn hill has n−1 continuous derivatives, with the
discontinuities occurring at x=D±d . The envelope of the spectrum �̂(k) decays as k−(n+1) as
k→∞ [1]. The shape of the spectrum, calculated using the discrete fast Fourier transform, can
be seen in Figure 1.

For the cases n=1,2, . . . ,7, we sample � pointwise on a uniform grid of N points, spacing �x=
2D/N , and consider the convergence of linear finite difference schemes of order m=1,2, . . . ,7
for the spatial first derivative of �. The mth order scheme uses a stencil of m+1 points, centred
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Figure 1. Left: the isolated cosine hill �(x) for the cases n=2 and 6. Right: the spectral envelope |�̂(k)|
of an isolated cos2 hill. A k−3 line has been added to show the spectral decay.
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Figure 2. The l1 normalized error for all the seven schemes with n=4. Moving from a fourth-order
scheme to a fifth-order scheme gives the same convergence rate but offers significant reduction in the

magnitude of the error; however, moving higher than fifth order offers less reduction.

for even m and biased half of one grid length to the left for odd m; this determines the scheme
uniquely. Convergence with increasing resolution is measured in the l1, l2, and l∞ norms.

Taylor series analysis gives predictions for the convergence rates:

l1∼(�x)min(m,n), l2∼(�x)min(m,n−1/2), l∞ ∼(�x)min(m,n−1) (3)

These predictions depend only on the fact that � is infinitely differentiable except at a finite set of
points where it has n−1 continuous derivatives, and not on any other details. Numerical testing
confirms these predictions; an example is shown in Figure 2. For each n there is a maximum
attainable convergence rate. Moving to a higher-order scheme will reduce the overall error, although
eventually with diminishing returns; this can be seen in Figure 2.

The experiments were repeated using another function �̃(x) constructed by randomizing the
phases of the Fourier components �̂(k); �̃ has the same spectral shape as �, but does not have
spatially localized discontinuities in the derivatives. In these numerical experiments l1, l2, and l∞
all scale like (�x)min(m,n−1/2).

3. CONVERGENCE OF NUMERICAL ADVECTION SCHEMES

Now the same finite difference schemes, for m=1,2, . . . ,6, are used to evaluate �x in the linear
one-dimensional advection equation

�t +U�x =0 (4)

We take U>0 so that the spatial derivative schemes for odd m are upstream biased. A second-order
scheme is used for the time derivative (centred difference for even m, Adams Bashforth for odd m),
with the time step chosen sufficiently small that time truncation errors are negligible. The cosine
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Table I. l2 Convergence rates for the advection of the isolated cosn hill.

l2 n in cosn

Order (m) 1 2 3 4 5 6 7

1 0.8 0.9 0.9 0.8 0.8 0.8 0.8
2 1.0 1.8 2.0 2.0 2.0 2.0 2.0
3 1.1 1.9 2.8 3.0 3.0 3.0 3.0
4 1.2 2.0 2.8 3.9 4.1 4.1 4.1
5 1.3 2.0 2.9 3.8 4.8 5.0 5.0
6 1.3 2.1 3.0 4.0 4.9 6.0 6.1

hill is advected once around the domain with U kept constant. The convergence rates for the
pointwise l2 errors, determined empirically for various m and n, are shown in Table I. In particular
(i) for n>m, the convergence rate is approximately equal to m; (ii) for n�m, the convergence rate
is reduced below m.

These results can be explained theoretically as follows. Define the function E(k,�x, t) to be
the error in the advected � divided by the initial � when � consists of single Fourier component
proportional to eikx :

�fd(x, t)−�tr(x, t)=E(k,�x, t)�tr(x,0) (5)

Orthogonality of different Fourier components then allows l2 to be expressed as

l2=
(
1

N

N∑
j=1

|� j |2
)1/2

=
(

N/2∑
l=−N/2+1

|E(kl ,�x, t)|2|�̂(kl)|2
)1/2

(6)

where kl =�l/D is the lth resolved wavenumber. Let R(k�x) be the response function for the
finite difference spatial derivative

�x,fd= R(k�x)�x,tr (7)

Then E can be expressed in terms of R by solving the spatially discretized version of (4) for a
single Fourier component:

E(k,�x, t)=exp(−ikUt){exp[−ikU (R−1)t]−1} (8)

For this problem Ut=N�x . Defining S(k�x)≡(k�x)(R−1) allows |E | to be expressed as

|E |=|exp[−ikU (R−1)t]−1|=|exp(−iNS)−1| (9)

For even m, R is real and |E | is a function that oscillates between and 0 and 2; for odd m, R is
complex and |E | increases then quickly settles at 1, see Figure 3.

For a scheme of order m for the spatial derivative, R(k�x)=1+O[(k�x)m] for small k�x .
Therefore,

S=O[(k�x)m+1] (10)

There are now two cases to consider. In the first case large scales (i.e. small k) dominate the error.
The convergence rate is then controlled by the behaviour of E for small values of NS, where
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Figure 3. This plot shows |E | for a second-order centred derivative and |�̂(k)|
for an initial isolated cos2 hill; N =11.

|E | is small. In this limit |E |=O[N (k�x)m+1] while �̂(k) is independent of N for fixed k. Thus,
substituting in (9) and (6), we obtain

l2 = [O(N 2(k�x)2(m+1))]1/2

= O(N−m) (11)

In the second case, smaller scales (i.e. large k) dominate the error. The dominant contribution
to the error will come from around the first peak in |E |, which occurs for NS∼constant for both
even and odd m. As N is increased, S at the peak must decrease, hence, the peak will move to
small k�x ; therefore, the asymptotic behaviour of S is still given by (10). Thus, from (10), since
S at the peak ∼1/N for large N , k�x at the peak ∼(1/N )1/(m+1), and k at the peak ∼Nm/(m+1).
The dominant errors thus come from small k�x but large k as N →∞. Using the fact that k at the
peak grows with N , we may assume that the large k power law scaling |�̂(k)|∼k−p. A scaling
for the l2 error can then be found most easily by introducing a change of variable �≡N−mkm+1.
In the asymptotic regime, E is approximately a function of �, while the spectral amplitude, re-
expressed in terms of �, becomes |�̂(k)|∼�−p/(m+1)N−pm/(m+1). Thus, expression (6) for the l2
error becomes

l2∼
[

N∑
l=1

|E(�l)|2�−2p/(m+1)
l N−2pm/(m+1)

]1/2
(12)

where �l =N−mkm+1
l . The sum can be made to look like an integral by noting that

�kl ≡kl+1−kl =�/D (13)
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is constant, but also

�kl ≈ 1

m+1
Nm/(m+1)�−m/(m+1)

l ��l (14)

Thus

l2∼
[

N∑
l=1

|E(�l)|2N (1−2p)m/(m+1)�−(2p+m)/(m+1)
l ��l

]1/2
(15)

The N dependence can then be brought outside the sum, and ��l →0 for large N so that the sum
approaches an integral independent of N . Therefore,

l2∼N−(p−1/2)m/(m+1) (16)

Finally, for the isolated cosn hill for which p=n+1,

l2∼N−(n+1/2)m/(m+1) (17)

The two cases together are summarized as

l2=O(�xmin[m,m(n+1/2)/(m+1)]) (18)

The values in the table are generally close to the predicted values, although with some differences.
For m=1 asymptotic convergence rate was not reached for the values of N tested. Also, for large
m the theory predicts that the peak in |E | moves towards small k�x very slowly, (k�x at the peak
∼(1/N )1/(m+1)), so that in practice roundoff errors start to dominate truncation errors before the
asymptotic convergence rate is reached; the values shown are estimates taken just before roundoff
errors become noticeable. In the case of m=n, the two powers in Equation (18) are sufficiently
close to require greater resolution before the lower term dominates; the empirical convergence
rates lie between these two values.

This derivation does not depend on the phases of the Fourier components of the initial data.
Numerical experiments using the randomized phase function �̃ as initial data gave very similar
convergence rates to those in Table I.

4. CONCLUSION

Convergence rates have been computed theoretically and numerically for differentiation and advec-
tion of the isolated cosn hill. When n is sufficiently large, so that the function is sufficiently smooth
and its spectrum is sufficiently steep, the convergence rate is given by the order of accuracy. For
smaller n, n itself, through the spectral decay, controls the convergence rate of finite difference
derivatives (3). For finite difference advection schemes, the convergence rate is determined by an
interaction between the spectral decay and the order of scheme (18).

The spectral slope for atmospheric and oceanic quantities is very shallow, e.g. [2–4]. These
shallow slopes apparently result from a combination of ubiquitous, effectively random, wave and
turbulence fields and localized sharp features such as fronts. Although the results presented here
are only for relatively simple one-dimensional cases, the examples using both the isolated cosn hill
� and its randomized phase version �̃ are nevertheless likely to be relevant. It would be valuable
to know whether our conclusions can be extended to nonlinear and multidimensional problems.
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Further tests have been completed with the isolated cosine hill adjusted to reflect observed atmo-
spheric spectra. A further paper presenting these results, greater analysis of the work covered here,
plus analytical and empirical convergence rates for interpolation and semi-Lagrangian advection,
is in preparation.
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